We studied active flexion from 90° to 133° and passive flexion to 162° using MRI in 20 unloaded knees in Japanese subjects. Flexion over this arc is accompanied by backward movement of the medial femoral condyle of 4.0 mm and by backward movement laterally of 15 mm, i.e., by internal rotation of the tibia. At 162° the lateral femoral condyle lies posterior to the tibia.

Subjects and Methods

The subjects were 20 adult male volunteers without symptoms in their knees and with normal MR images. Their mean age was 29.7 years (26 to 40).

The left knee was scanned in an open MR imaging unit (Airis; Hitachi, Tokyo, Japan). The knees were imaged in neutral rotation at 90°, in active maximum flexion and in passive maximum flexion. Measurements were made as described elsewhere. At 90° flexion and active maximum flexion, the subject was scanned while lying on his side with the knee to be imaged in contact with the table. The position of maximum passive flexion was maintained by the body-weight (Fig. 1). At this position little tibial rotation was possible, i.e. the knee was rotationally locked.

Results

From 90° to full active flexion (133 ± 9°, mean ± sd) the mean posterior translation of the lateral femoral condyle was 13 ± 6 mm whereas for the medial femoral condyle it was 2 ± 2 mm. Therefore, over this arc of flexion, a mean tibial internal rotation of 15 ± 9° occurred around an axis passing through the medial tibial condyle.

Passively forcing the knee from active to full passive flexion (i.e., from 133° to 162 ± 4°, mean ± sd) moved the medial femoral condyle back a further 4.5 ± 2 mm and the lateral femoral condyle 15 ± 4 mm. Thus there was a further 13 ± 6° of internal tibial rotation combined with about 4.0 mm of femoral posterior translation. At full passive flexion, the centre of the posterior circular portion of the lateral femoral condyle was 7 ± 5 mm posterior to the posterior tibial cortex and the lateral femoral condyle was only just in contact with the lateral tibial condyle. The medial femoral condyle had lifted away from the tibia.

Conclusions

Previous studies have shown that as the unloaded knee is flexed to 120° in neutral rotation, the lateral femoral...
condyle rolls back especially after 60°. We have now shown that this process continues with further flexion so that by full passive flexion (162°) the lateral femoral condyle has moved back 28 mm (compared with its position at 90°) and has lost normal contact with the tibia. By contrast, the medial femoral condyle does not move back until 110° in the Caucasian knee and then by 1 mm to 120°. In the Japanese knee, medial movement may start at 90° but amounts to only 2.0 mm by 133° and a further 4.5 mm from 133° to 162°. Thus, forced flexion of the Japanese knee from 90° to 162° is accompanied by about 28° of tibial internal rotation and about 4.0 mm of femoral posterior translation towards full flexion.

At full passive flexion the lateral femoral condyle may be regarded as being posteriorly subluxed. The medial condyle still lies over the tibia but lifts away from it.

We thank Y. Ohara and M. Ito (Hitachi, Osaka, Japan) for their technical assistance in MRI. This work was partly funded with Research Promotion Fund by the Department of Orthopaedic Surgery, Osaka City University Medical School.

No benefits in any form have been received or will be received from a commercial party related directly or indirectly to the subject of this article.

References


A list of consulted publications concerning the normal knee will be found on the Journal of Bone and Joint Surgery web site (www.jbjs.org.uk) for this issue until 2002.

THE JOURNAL OF BONE AND JOINT SURGERY