CORRESPONDENCE

We welcome letters to the Editor concerning articles which have recently been published. Such letters will be subject to the usual stages of selection and editing; where appropriate the authors of the original article will be offered the opportunity to reply.

Letters should normally be under 500 words in length, double-spaced throughout, signed by all authors and fully referenced. The edited version will be returned for approval before publication.

OSTEOTOMY FOR HALLUX VALGUS

Sir,
In their article in the September 1993 issue entitled ‘Chevron or Wilson metatarsal osteotomy for hallux valgus’ (1993; 75-B: 825-9) Klosok et al report worse results after chevron osteotomy. This must be interpreted according to selection criteria: the authors report a preoperative hallux valgus angle of 30 ± 8.8° (27 to 40) in their chevron osteotomy group.

Because of limitations of lateral displacement, however, (Sarrafian 1985), chevron osteotomy is recommended for hallux valgus of 30° or less, with a first to second intermetatarsal angle of less than 13° and no degeneration in the first MTP joint (Richardson 1992). It would therefore be useful to know the results of chevron osteotomy in two subgroups.

D. SINGH, FRCS
The Royal National Orthopaedic Hospital
Stamore
Middlesex, UK.


Authors’ reply:

Sir,
We are aware of the theoretical limitation of correction by the chevron osteotomy (Sarrafian 1985). Other authors recommend wider indications, with a hallux valgus angle of less than 40°, and an intermetatarsal angle of less than 20° (Corless 1976; Johnson et al 1979; Johnson 1981; Richardson 1992).

We acknowledge that correction to a cosmetically acceptable angle is more difficult in the more severe cases.

Rossi and Ferreira (1992) have made a retrospective evaluation of 113 patients (168 feet) operated on using the chevron osteotomy. In their series (average age 39.7 years; 19 to 61) the average hallux valgus angle was 28.1° (21 to 42), and was corrected to an average 10.5°. The average preoperative intermetatarsal angle of 15.5° (11 to 18) was corrected to an average 5.1°.

In our series, 12 of the 45 feet had a hallux valgus angle greater than 35°, and gained an average correction at early review of 23.5° ± 2.2° and at later review of 25.8° ± 4.8°. ANOVA analysis showed no significant differences between these patients and the whole group. There was less loss of correction in the patients with an initially greater hallux valgus angle, but the difference was not significant.

N. MAFFULLI, MD, PhD, MBIol
University of Aberdeen Medical School
Aberdeen, UK.
J. K. KLOSOK, FRCS
Newham General Hospital
London, UK.


THROMBOEMBOLISM IN ORTHOPAEDIC SURGERY

Sir,
An editorial should give a balanced view of a current topic. I felt that the editorial by McNally and Mollan (1993; 75-B:517-9) did less than justice to the use of low-molecular-weight heparins. They criticised the meta-analysis of Nurmohamed et al (1992) because it included data from trials in which low-molecular-weight heparin (LMWH) was compared with both standard heparin and with standard heparin plus dihydroergotamine (DHE). Previous analyses for the last two, however, had yielded no significant difference, and it was therefore reasonable to pool these studies. The editorial also quotes Gallus et al (1992), who reported a small study of 117 patients in which the difference in the incidence of deep-vein thrombosis in patients given heparin and heparin/DHE was only 10% with a 95% confidence interval ranging from 7% to +26%. Gallus et al concluded, however, that the observed results were consistent with a 7% difference in favour of heparin/DHE.

The editorial continues "Recent trials, in total hip replacement, have shown no difference in efficacy between LMWH and standard heparin alone (Eriksson et al 1991; Leyvraz et al 1991; GHAT 1992)". Eriksson et al found no significant difference in overall thrombosis, but very significant differences in the incidence of both proximal vein thrombosis (31% with unfractionated heparin and 10% with LMWH; p = 0.011) and pulmonary embolism (30.6% with unfractionated heparin and 12.3% with LMWH; p = 0.016). Leyvraz et al similarly found highly significant reductions of proximal thrombosis (13.1% to 2.9%; p = 0.001) and concluded that "LMWH is at least as effective as unfractionated heparin in preventing deep-vein thrombosis, and is more effective at preventing thrombosis of the proximal veins in patients undergoing hip replacement". The German hip arthroplasty trial (GHAT group) found a similar overall reduction in the number of venous

©1994 British Editorial Society of Bone and Joint Surgery 0301-620X/94/2760 82.00

VOL. 76-B, No. 2, MARCH 1994